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A simple method has been developed for calculating the stresses near the ends of a parallel- 
sided adhesive layer. The method can be applied to adhesive layers having aspect ratios of 
10 or greater, and Poisson’s ratios of 0.49 or less. For a layer subject to uniform boundary 
conditions of displacement at the adhering surfaces, the stress fields at distances greater 
than about five layer thicknesses from the free surfaces are uniform. The stress field through- 
out the layer is uniquely determined by the stresses in the uniform stress region. If the 
stress field is expressed by functions of reduced coordinates of position, obtained by 
dividing the Cartesian coordinates by the layer thickness, these functions are for practical 
purposes independent of the aspect ratio or the thickness. 

The method has been used to calculate shrinkage stresses, the stresses in a joint under 
tension perpendicular to the plane of the adhesive layer, and the stresses in a joint under 
shear. The features of the stress fields are described, and where necessary, shown in the 
form of graphs or contour plots. 

1 INTRODUCTION 

One of the factors which is likely to affect the performance of an adhesive 
joint is the distribution of stress within the adhesive layer. The stress can 
result from the load applied to the joint, or from strains whose equilibrium 
is maintained internally, due for example to shrinkage of the adhesive with 
respect to the adherends when the joint is formed. There are a number of 
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196 N. L. HARRISON AND W. J. HARRISON 

published theories in which the stress distribution in adhesive joints is 
In the theory of Goland and Reissner2, the adherends are 

treated by beam theory, so that the results can only be expected to apply 
at distances from the ends of the joint comparable with or greater than the 
thickness of the adherends. The stress distributions calculated by Volkerson' 
and Cherry and Harrison3 do not conform with the boundary condition that 
the shear stress must be zero at the free surfaces at the ends of the adhesive 
layer, and therefore cannot be valid near the ends. Wake4 has attempted to 
calculate the shear stresses resulting from shrinkage of the adhesive, on the 
assumption that the adhesive is in uniform extension. Again, this is unlikely 
to apply near the free surfaces as the tensile stress perpendicular to a free 
surface must be zero. 

All the problems treated by these authors are within the scope of the 
finite element method of stress analysis5, and there is no special difficulty in 
obtaining stress values as close to the free surfaces of the adhesive as desired. 
In order that useful results can be obtained by this method, it is only necessary 
that the problems should be formulated in such a way that the results of a 
limited number of calculations can be applied generally. The problem treated 
in this paper is that of a layer of linearly elastic, isotropic material subjected 
to a simple set of boundary displacements. The layer is illustrated in Figure 1. 

FIGURE 1 Diagrams showing dimensions of adhesive layer and coordinates of position. 

The upper and lower surfaces (interfaces) are subject to displacements 
proportional to distance from any specified point in these surfaces, to 
uniform displacements towards or away from each other, and to displace- 
ments parallel to each other but in opposite directions. These situations 
correspond to an adhesive layer attached to rigid adherends, subject to 
shrinkage stresses, tension perpendicular to the layer, and shear. 
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Consider an adhesive layer of length 1 and thickness t as shown in Figure 1 .  
The layer extends indefinitely perpendicular to the plane of the paper, and it 
is assumed that there are no stress or strain variations in this direction. The 
usual coordinates (x, y) are reduced to non-dimensional form X, Y, where 

X Y 
x’=- y = -  t ’  t 

Two edges of the adhesive layer (x = 0, x = l )  are free surfaces. On the other 
two surfaces, the boundary condition of displacement are as follows : 

On y = 0, u = u , (X) t ,  u = u l ( X ) t  1 

On y = t ,  u = u 2 ( X ) / ,  u = uz(X)r  I 

where u and u are displacements in the .‘c and y directions respectively, and 
u1 ulr u2 and u2 are given functions of X .  

From dimensional considerations (see Appendix), the stresses in such a 
layer, compared with other layers having the same aspect ratio (lit), the 
same Poisson’s ratio v and boundary conditions as expressed by Eq. (2) 

(2) 

(i) are proportional to Young’s modulus E ;  
(ii) are the same functions of X and Y .  
We consider now a special case of the boundary conditions (2). Let the 

tensile strain parallel to the plane of the layer have a constant value A ,  at the 
interfaces. Let the upper interface be displaced a constant distance with 
respect to the lower interface, A3t in the x direction, A,t in the y direction. 
Under these circumstances 

(3) 
U l ( X )  = A , X ,  Ul(X)  = 0 I 
u z ( X )  = A , X  + A,, u2(X)  = A2 1 

Let 6, oy, r x y  be the tensile and shear stresses throughout the layer. From 
the principle of linear superposition we can write 

rxy 

where B,, are dimensionless quantities. From the statements (i) and (ii) 
above, Bij  are functions of Xand Y but are independent of Young’s modulus. 
They may be functions of the aspect ratio and Poisson’s ratio. 

The boundary conditions defined by Eqs. (3) correspond either to uniform 
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strains at the adhering surfaces, or uniform displacements. On account of 
this, it seems likely that the stresses in the layer many thicknesses from the 
free surfaces will also be uniform. If this is the case, the strains in this region 
are related simply to A , ,  A,,  and A 3 :  

( 5 )  

where ex and E,, are the tensile strain parallel to the x and y directions res- 
pectively, and y x y  is the shear strain referred to these axes. Stresses and 
strains in a region where the stress is uniform will be related by equations as 

6, = -41, Ey = A,, Yx,, = A3 

follows (see for example Ref. 5 ,  p.31). 

(J, = El(&, + VIEy) 

b y  = El(V1EX + E y )  

t x y  = G Y x y  

where 

E(l - V) 
(1 + v)(l - 2v) El = 

V 
v1 =cv (7) 

If we use Eqs. ( 5 )  to re-write Eqs. (6) as 

(8) I (Jx = ElU1 + v1Az) 

(Jy  = El(VlA1 + A,)  

zXy = G A ,  

and compare Eqs. (8) with Eqs. (4), then in any region of uniform stress we 
will have 

El B , ,  = B,, =F 
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THE S T R E S S E S  IN AN ADHESIVE LAYER 199 

This suggests that a more appropriate form for the equations relating 
stresses to boundary conditions would be 

I 

where Cij are functions of the reduced coordinates X and Y, the aspect 
ratio and Poisson’s ratio. In a uniform stress region 

C I 1  = c,, = c33 = 1 

CI2 = c,, = v 1  

C13 = C23 = C31 = C3, = 0 i 
It is unnecessary to assume the existence of a uniform stress region to 

derive Eqs. (10). They can be regarded at this stage simply as an alternative 
to  Eqs. (4). Whether or not a uniform stress exists, and how close it would 
extend to the free surfaces, can be determined when the coefficients Cij have 
been evaluated. 

EVALUATION OF THE COEFFICIENTS Cij 

In this section, the stresses at any point in a layer subjected to three distinct 
sets of boundary conditions will be determined. These stresses and the 
values of A l ,  A , ,  and A ,  are substituted into Eqs. (lo), yielding nine equations 
with nine unknowns Cij.  Solution of these nine equatiotis gives the values of 
Cij for the point in question. 

There is one situation in which the stress and strain fields throughout the 
layer are particularly simple. A tensile stress cry uniform throughout the 
layer, with both 6, and T~~ zero, satisfies the conditions of equilibrium and 
continuity, and the boundary conditions at the free surfaces, and is therefore 
a possible stress configuration. For this condition with oy = 1, we have 
from Eqs. (8), 
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Hence we choose as the first set of boundary conditions 

1 
A -  

A,  = O  

, - E,(1 - v 1 2 )  

resulting in a stress field 

0, = 0, CTy = 1, T x y  = D (14) 

for all values of X and Y. Substituting Eqs. (13) and (14) in (10) gives the 
first three equations. 

For a layer of a particular aspect ratio and Poisson’s ratio, two further 
stress fields corresponding to two sets of boundary conditions, necessary for 
solution of Eqs. (lo), can be determined by finite element analysis. On account 
of the symmetry of the problem, it is necessary only to consider one quarter 
of the layer; the part chosen was the region 0 5 Y I 0.5 extending from 
X = 0 to one half of the layer length. Stresses were determined for layers 
having Poisson’s ratios of 0.33 and 0.49. Incompressible materials ( v  = 0.5) 
cannot be treated easily by the finite element method, but the Poisson’s 
ratio of 0.49 was used as an approximation to the condition. Young’s 
modulus was taken as unity. The two sets of boundary conditions were 
chosen arbitrarily to be 

A ,  = 0 .01 ,A2  = - 0 . 1 , A 3  = 0 1 
A1 = 0, A2 = 0, A3 = - 1.0 I 

While these correspond to very large strains, the method of computation 
is such that stresses are proportional to boundary displacements, no matter 
how large these are. The boundary conditions of Eqs. (16), together with 
the set given in Eqs. (15), provided the three sets necessary for solution of 
Eqs. (10). 

An initial set of computations was carried out on layers of aspect ratios 
10:l and 1OO:l. The quadrant of the 1 O : l  layer with X < 5, Y < 0.5 was 
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divided into 190 triangular elements, with a concentration of small elements 
near the corner (X = 0, Y = 0) where the stresses were expected to vary 
most rapidly with position. The subdivision of the 100: 1 layer was identical 
with that of the 10: 1 layer in the region X < 5, Y < 0.5, but further elements 
were added in the region X > 5 to give a total of 315 elements. The stresses 
were determined by means of a computer program essentially the same as 
that published in Reference 5 ,  but with provision for nodal averaging 
(see Reference 5). The coefficients C l j  were calculated from the nodal averages 
of the stresses. 

Variation of the aspect ratio from 10: 1 to 100: 1 had only a small effect on 
the values of Cij.  For v = 0.33, the differences due to variation of the aspect 
ratio were less than 1 % throughout. For v = 0.49, the effect was greater, 
with most differences of the order of 5 %  and some up to 10%. With the 
coefficients C,, and C32, the percentage differences were in some places 
larger than 10 %, but only where the values of the coefficients were insignifi- 
cantly small. 

Variation of Cij with position (X, Y )  was significant only within a few 
layer thicknesses of the free surfaces for both Poisson’s ratios. The region of 
variation was very much smaller with v = 0.33 than with v = 0.49. Since 
Cij do not vary except near the ends of the layer, the stress fields associated 
with surface displacements of the form given by Eqs. (3) are uniform through- 
out most of the layer. Cij in the uniform stress region were found to have the 
values predicted in Eqs. (1 1). 

A third mesh of triangular elements was constructed, corresponding to  an 
aspect ratio of 20: 1, containing three times the density of elements in the 
regions where significant stress variations were detected with the previous 
meshes. The portion of this mesh containing the corner is shown in Figure 2. 
Clj  were calculated as before using stresses determined from this mesh. For 
v = 0.33, these agreed well (within about 10% of their values, where these 
were of significant magnitude) except in the region Xc 0.03. For v = 0.49, 
the differences were larger, typically of the order of 20 % in the region where 
the stresses varied, but again with larger discrepancies close to the free 
surface. In all cases, the stresses well away from the free surface ( X  > 3) 
agreed very closely with those obtained previously. Certain of the stresses 
rose rapidly near the corner, and the maxima of these obtained with the 
fine mesh were as much as 29 times the values obtained previously. It is 
likely that these are in fact infinite at the corner. 

On account of the similarity of the calculated values of Cij corresponding 
to the aspect ratios of 10: 1 and 100: 1, it is reasonable to assume that these 
quantities are independent of aspect ratio provided this is greater than 
10: 1. Aspect ratios of less than 10: 1 have not been treated, since adhesive 
layers of such low aspect ratio are unlikely to occur in practice. The values 
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FIGURE 2 Portion of finite element mesh used for determination of Ci,. 

of C i j  obtained with the fine mesh of 20: 1 aspect ratio should be considerably 
more accurate than those obtained with the other meshes, and some of these 
have been tabulated in Tables 1 and 2. All numerical results presented 
subsequently were obtained from this mesh also. 

APPLICATIONS 

The loads on a joint are more easily determined in practice than the relative 
displacements of the interfaces. In sub-sections I ,  2 and 3 following, situations 
are considered in which the boundary conditions of the adhesive layer 
conform to Equations (3), and it is shown how Al ,  A, and A3 and hence the 
stress fields, can be calculated from applied loads. The adherends are assumed 
to be perfectly rigid. The stresses in the layer are due to shrinkage with 
respect to the adherends (Figure 3a), tension perpendicular to the plane of 
the layer, symmetrical about the centre of the layer, applied to the adherends 
(Figure 3b), and shear stresses applied to the adherends (Figure 3c). 

For the cases in which the joint is subject to external loads, it will be 
assumed that there are no shrinkage stresses. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



204 

FIGURE 3 Types of loading for which stress fields are calculated. 
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THE STRESSES IN AN ADHESIVE LAYER 205 
1. Shrinkage Stresses (Figure 3a) 

If an adhesive shrinks after it has bonded to a rigid surface, i t  retains a tensile 
strain at the surface equal to the linear contraction per unit length which it 
would undergo if it were free. This quantity will be referred to as the relative 
shrinkage. A l  is equal to the relative shrinkage. If the adherends are free 
of externally applied loads, A 3  is zero by symmetry, and A ,  is such as to make 
the mean value of ay at the interfaces zero, i.e. 

d x  = 0 (17) 

An expression can be found for the integral in terms of A , ,  A,,  A J ,  and Cij  
and Eq. (17) solved to give A 2 .  Alternatively, if the aspect ratio of the joint 
is large, A2 can be calculated on the assumption that A ,  is such as to make 
a), zero in the uniform stress region; i.e. from Eqs (8) 

A2 = - v , A I  (18) 
Shrinkage stresses were calculated using the two methods indicated for 
determining A , ,  for an aspect ratio of 100: 1. The differences were insignifi- 
cant for both v = 0.33 and v = 0.49. The stress field was uniform throughout 
the layer, except within about five layer thicknesses from the ends. Near the 
ends, ay was compressive, while gX fell below its value in the uniform stress 
region. The maximum of T , ~  corresponding to any value of X occurred at or 
near an interface, and diminished with increasing distance from a free 
surface. 

In Figure 4, the value of tXy at the interface is plotted as a function of X .  
T , ~ ) ,  is proportional to the stress ox in the uniform stress region, and the 
curves shown in Figure 4 correspond to a, = 1. There is a much greater 
concentration of stress for v = 0.33 than for v = 0.49. 

The tensile stress ax in the uniform stress region is easily calculated from 
Eqs. (lo), (1 1)  and (18). 

ax = ( 1  - v I ~ ) E I A ,  

It depends only on the relative shrinkage and elastic constants. The shear 
stresses, relative to this tensile stress, depend only on the coordinates of 
position. They are virtually independent of the thickness of the joint and 
the aspect ratio. This is in accordance with the argument presented by Dukes 
and Bryant6 and contrary to that of Wake4. 

2. Joint under tension (Figure 3b) 

If the adherends of a joint are subjected to symmetrically placed tensile 
forces acting perpendicular to the plane of the adhesive layer, and if the 
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0 1 2 3 

X- 

FIGURE 4 Interfacial shear stress resulting from shrinkage of the adhesive. u, in the 
uniform stress region = 1 .O. 

relative shrinkage is zero, A ,  and A3 are zero. If the total force is FL and the 
total area of the joint A ,  the mean tensile stress cy at the interface is F J A .  
It can be assumed that the non-uniform stresses near the free surfaces have a 
negligible effect in determining the relative displacements of the adherends, 
and so cry in the uniform stress region is equal to FJA.  From Equations (8) 
we then have 

b.L A -- 
- AE1 

Calculation of the stress field from Eqs. (10) showed that the stress field in 
the regions where it is not uniform is similar in form to that arising from 
shrinkage. Both eu and c, are less than in the uniform stress region, while 
5,. has an appreciable value only near the free surfaces. The interfacial shear 
stresses corresponding to a mean ey of unity are plotted in Figure 5 .  

3. Joint under shear (Figure 3c) 

With the loading situation shown in Figure 3c, any relative movement of the 
adherends perpendicular to the plane of the adhesive layer arises from the 
moment of the force acting on the upper adherend about the lower adherend. 
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FIGURE 5 
the layer. uv in the uniform stress region = 1.0. 

Interfacial shear stress resulting from tension perpendicular to the plane of 

If the joint is long relative to its thickness, we can assume this movement has 
a negligible effect on the displacements of the adherends, and can take A ,  
as zero. A l  is zero since there is no relative shrinkage. We can assume that 
A ,  is determined by the shear stress in  the uniform stress region, which is 
equal to F I I / A  where F,,  is the force parallel to the adhesive layer acting on one 
of the adherends. From Eqs. (8) 

A ,  = F, , /AG (20) 
Calculation of the stress field showed that throughout most of the joint, 
ax and G,, are zero. However, close to the free surfaces they rise to values well 
above the uniform shear stress. The shear stress z,~ is lower near the free 
surfaces than elsewhere. The interfacial tension oY is plotted in Figure 6 .  
Stresses above the mean shear stress extend well away from the interface into 
the adhesive layer. Since the adhesive is isotropic it is desirable to express the 
stresses in the layer itself, rather than at the interface, in a manner independent 
of the system of co-ordinates. Accordingly, the principal stresses c1 and a2, 
and the maximum shear stress, T, given by 

T = $(GI - Gz) (21) 
were calculated. 

The values obtained for the maximum shear stress rose above unity, for 
unit shear stress in the uniform stress region, only in the small region X < .03, 
Y < .03, and in that region were less than half the greater of the two principal 
stresses (i.e. u1 and o2 were of the same sign). The greater of the two principal 
stresses rose appreciably above the mean shear stress over a larger portion 
of the layer. The magnitude and extent of this enhanced stress are shown in 
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FIGURE 6 Interfacial tension for joint under shear. T . ~ ~  in the uniform stress region = 1 .O. 

the contour plots, Figures 7 and 8. These show the part of the layer with 
0 < X < 0.75, 0 < Y < 0.50. The plots for other parts of the layer close 
to the free surfaces would be mirror images of the one shown. For a positive 
shear stress applied to the adherends, the greater principal stress in the 
region shown is tensile; this is also the case in the diagonally opposite 
corner of the layer. The greater principal stress in the other corners is 
compressive. 

For any value of F , , / A ,  the magnitudes of the non-uniform stresses are 
independent of the layer thickness, but the volume of adhesive in which 
magnified stress occurs increases with increasing thickness of the adhesive 
layer. It has been found experimentally that the strengths of joints diminish 
with increasing thickness of the adhesive layer (e.g. References 6 ,  7). If 
failure of the joint were governed by the stresses in uniform stress regions, 
the dependence of strength on thickness could result from the greater volume 
of adhesive under stress, according to flaw theories of failure6. The strength 
of the joint would be a function of the total volume of adhesive under stress. 
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However, if failure is governed by the concentrated stresses near the free 
surfaces, there would be no dependence on the length of the layer, but only 
on its thickness. 

FIGURE 7 Contour plot of greater principal stress in joint under shear, for u = 0.33. 

0 0.75 
X- 

FIGURE 8 Contour plot of greater principal stress in joint under shear, for U = 0.49. 
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4. Furthern Applications 

As pointed out in the introduction, there are a number of published methods 
for calculating the stresses in adhesive joints of various configurations which 
are applicable to regions in the adhesive layer well away from the free 
 surface^'*^*^. In the usual practical situations in which the adherends are 
thick compared with the adhesive layer, or of higher modulus, the stress 
fields calculated by these methods vary only slightly over many layer thick- 
nesses. Since the rate of variation of stress is slight, the relative displacements 
of the surfaces of the adherends over the entire regions to which these 
methods are applicable can be calculated by solving Eqs. (8). Furthermore, 
unless the adherends are particularly flexible, the displacements a few layer 
thicknesses from the ends of the joint can be assumed to  be the same up to 
the ends. The stress field up to the free surfaces of the adhesive layer, except 
within a small fraction of the layer thickness from the corners can then be 
calculated from the known values of A , ,  A,  and A3,  the coefficients given in  
Tables 1 and 2 and Eqs. (10). 

CONCLUSIONS 

The general conclusions which can be drawn from this work apply to 
adhesive layers having aspect ratios of 10 or greater, and Poisson’s ratios of 
0.49 or less. For a layer subject to uniform boundary conditions of displace- 
ment at  the adhering surfaces, the stress fields at distances greater than about 
five layer thicknesses from the free surfaces are uniform. The stress field 
throughout the layer is determined uniquely by the stresses in the uniform 
stress region. If the stress field is expressed by functions of reduced co- 
ordinates of position, obtained by dividing the Cartesian coordinates by the 
layer thicknesses, these functions are independent of thickness and for 
practical purposes are independent of the aspect ratio. 

If the adhesive has shrunk relative to the adherends, or if the joint is 
subject to tension perpendicular to the plane of the adhesive layer, there is a 
concentration of shear stress at the interfaces near the ends of the joint. In a 
joint subject to an applied shear stress, there is a concentration of tensile 
stresses in the adhesive near its free surfaces, and the stresses in this region 
rise to several times the mean applied stress. 

The data necessary for calculating stresses in adhesive layers subject to 
uniform boundary displacements have been tabulated. These data can be 
used to calculate the stresses near the free surfaces of adhesive layers in 
which the boundary displacements are not strictly uniform, but vary only 
slightly over lengths several times the layer thickness. 
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APPENDIX 

Consider two adhesive layers, one of thickness t and length I, and the other 
of thickness unity and length l i t .  Both layers have the same Poisson’s ratio. 
Layer 1 has Young’s modulus E and layer 2 has Young’s modulus unity. 

The boundary conditions for layer 1 are 

6, = r,,, = 0 at the free surfaces 

u = u l ( 4 ) t ,  v = v l ( ; ) t  on y = o  

u = u2 (;) t ,  u = v2 (\;) t on y = t 

The boundary conditions for layer 2 are 

6, = T~~ = 0 

u = ul(x), 

u = u,(x), 

at the free surfaces 

v = v l ( x )  on y = 0 

u = vt(x)  on y = 1 

In layer 1, we introduce new coordinates 

new units of displacement, 
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and new units of stress 

In these new units, the boundary conditions for layer 1 become 

S, = Txy = 0 at the free surfaces 

u = Ul(X), I/ = Ul(X) on Y = 0 

which are the same as those of layer 2. Similarly, the stress-strain relations 
of layer 1 in the new units are the sanie as those of layer 2 in the original 
units. Since the equilibrium and compatibility equations are valid in a n y  
units, it follows that the displacements U, V, in layer 1 equal the displacements 
u, u i n  layer 2, while S,., S,, Try in layer I equal bx, by, T ~ ) ,  in layer 2 .  
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